A Competitive Wavelet Layer for Pattern Clustering
نویسندگان
چکیده
A competitive “wavelet layer” is proposed for pattern clustering. It exploits the representation capabilities of adaptive wavelets to generate template approximations for each cluster of data. A brief review of adaptive wavelet representations, as well as some insight into local minima problems, is provided. The method is illustrated by a simple clustering problem, in which step responses of dynamic systems are discriminated with basis on the presence of parasitic oscillations. The results suggest that the wavelet layer exhibits superior performance than the conventional competitive neural layers when patterns exhibit a low signal-to-noise ratio.
منابع مشابه
High-dimensional clustering using frequency sensitive competitive learning
In this paper a clustering algorithm for sparsely sampled high-dimensional feature spaces is proposed. The algorithm performs clustering by employing a distance measure that compensates for diierently sized clusters. A sequential version of the algorithm is constructed in the form of a frequency sensitive Competitive Learning scheme. Experiments are conducted on an artiicial gaussian data set a...
متن کاملMulti-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms
Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...
متن کاملA robust wavelet based profile monitoring and change point detection using S-estimator and clustering
Some quality characteristics are well defined when treated as response variables and are related to some independent variables. This relationship is called a profile. Parametric models, such as linear models, may be used to model profiles. However, in practical applications due to the complexity of many processes it is not usually possible to model a process using parametric models.In these cas...
متن کاملFuzzy Clustering and Hyperanalytic Wavelet Transform for Lossy Image Compression: A Review
Clustering techniques are mostly unsupervised methods that can be used to organize data into groups based on similarities among the individual data items. Most clustering algorithms do not rely on assumptions common to conventional statistical methods, such as the underlying statistical distribution of data, and therefore they are useful in situations where little prior knowledge exists. The po...
متن کاملP14: Segmentation Brain Tumors of FMRI Images by Gabor Wavelet Transform and Fuzzy Clustering
Today, high mortality rates due to brain tumors require early diagnosis in the early stages to treat and reduce mortality. Therefore, the use of automatic methods will be very useful for accurate examination of tumors. In recent years, the use of FMRI images has been considered for clarity and high quality for the diagnosis of tumor and the exact location of the tumor. In this study, a complete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999